The Reaction of Main Group Polynuclear Cations with Transition Metal Carbonyls: Synthesis and Crystal Structure of [FeW(CO)₈Se₂](SbF₆)₂

Deborah J. Jones, Thomas Makani, and Jacques Rozière*

Laboratoire des Acides Minéraux, U.A. 79, Université des Sciences et Techniques du Languedoc, Place Eugène Bataillon, 34060 Montpellier Cédex, France

The mixed cationic cluster [FeW(CO)₈Se₂]²⁺, prepared by reaction of W(CO)₈ and Fe₂(CO)₉ in a 1:2 molar ratio, with Se₄²⁺ in SO₂, has a tetrahedral core structure.

The reaction of cationic rings and clusters of main group elements with transition metal complexes is a novel route for the synthesis of materials incorporating cyclic moieties or fragments of the main group cluster. Planar chalcogenyl cations $Ch_{4^{2+}}$ (Ch = S, Se, or Te) can lead to different types of cluster depending on the nature of the reacting species. For example, the Se₄ group is retained in the diselenyl cation $Se_4W_2(CO)_{10}^{2+}$, prepared from Se_4^{2+} and $W(CO)_6$,¹ whereas the reaction of Te_4^{2+} with Mo(CO)₆ gives the tetrahedrane $[Mo(CO)_4Te_3]^{2+}$ with a practically equilateral Te₃ triangle as base.² On the other hand, the reaction may give neutral clusters. The major product of the reaction of Se_4^{2+} with $Fe_3(CO)_{12}$ is the known $[Fe_3Se_2(CO)_9]$.³ In the present communication, we report the preparation and structural characterisation of the tetrahedral cluster WFeSe₂(CO)₈²⁺, formed from reaction of Se_4^{2+} .

Commercial W(CO)₆, Fe₂(CO)₉, and Se₄(Sb₂F₁₁)₂ (prepared according to the published procedure⁴), were used in molar ratios of 1:1.8:1. A solution of the metal carbonyls in SO₂ was allowed to react with Se₄(Sb₂F₁₁)₂, similarly dissolved in SO₂, in the second branch of a two-arm vessel. A red solution was immediately formed, which afforded small crystals after three days at room temperature. [WFeSe₂-(CO)₈](SbF₆)₂ is highly air sensitive, rapidly becoming black, and all manipulations were carried out under an inert atmosphere. Qualitative analysis using electron dispersive spectroscopy indicated the presence of Se, Fe, W, and Sb, and the stoicheiometric formula was obtained from the crystallographic results.[†]

The structure of the cation is shown in Figure 1. The Se₂FeW core adopts a distorted tetrahedral arrangement which is devoid of any space group-imposed symmetry. The selenium fragment in the cluster may formally be considered as an Se₂²⁺ ion stabilised by organometallic groups. Obviously the triple bond of the free Se₂²⁺ is lengthened by interaction with the carbonyl fragment and the π acceptor capacity of the

⁺ Crystal data [Se₂FeW(CO)₈](SbF₆)₂, M = 4372.48, monoclinic, space group P2₁/c; a = 15.251(4), b = 12.267(3), c = 12.047(3) Å, β = 92.81(2)°, U = 2251 Å³, Z = 4, F(000) = 1960, $D_c = 3.23$ g cm⁻³; μ (Mo-K_α) = 107.28 cm⁻¹. Intensity data were collected at room temperature using the ω -2θ scan technique (4° ≤ 2θ ≤ 56°).

Correction was made for absorption effects. 4609 Unique reflections (internal consistency 0.036) were used for solution of the structure (SHELX76 direct methods)⁵ and in the initial stages of refinement. The final residuals were R = 0.050; $R_w = 0.049$.

Atomic co-ordinates, bond lengths and angles, and thermal parameters, have been deposited at the University of Bonn. See Notice to Authors, Issue No. 1, 1986.

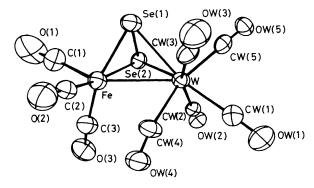


Figure 1. Crystal structure of $[FeW(CO)_8Se_2](SbF_6)_2$.

Se₂ moiety. The Se–Se bond length, 2.281(3) Å, corresponds to an approximate Se–Se bond order of 1.5,⁶ showing the presence of extensive delocalisation. This distance is significantly longer than that found in the diselenyl cation, $[W_2(CO)_{10}Se_4]^{2+}$, 2.208 Å, and closely approaches that in the mixed iron–selenium cluster, $[Se_2Fe_2(CO)_6]$, 2.293 Å (a neutral analogue, isoelectronic in the broad sense). Se–W distances, 2.601(2) and 2.606(2) Å, are also shorter than those in $[W_2(CO)_{10}Se_4]^{2+}$, 2.626(1) and 2.631(1) Å. The Fe–W bond length is 2.857(3) Å. Angles at Fe, Se(1), and Se(2) are in the range 58—64°, those at tungsten 50—52°.

As a result of steric crowding around tungsten, the carbonyl group CW(4)–OW(4) is semi-bridging to iron [CW(4)–Fe 2.543(18) Å; \angle OW(4)–CW(4)–Fe 117(1)°]. Furthermore, this interaction probably serves to mitigate the charge separation brought about by the 'dative' covalent bond from the 16 electron fragment W(CO)₅ to Fe(CO)₃W⁺ \rightarrow Fe⁻.⁷

Other short non-bonded interactions occur between selenium and fluorine. Although the network of Se–F interactions is not as extensive as that found in $(Se_4)(Sb_2F_4)(Sb_2F_5)$ - $(SbF_6)_{5,8}$ there are four Se–F distances less than 3.2 Å. These contacts appear to distort the geometry of the hexafluoroantimonate anion. The longest Sb–F distance, 1.899(12) Å, involves the fluorine atom in strongest interaction with Se [2.876(16) Å]. The average Sb–F bond length is 1.86(2) Å. Similarly, four short (~3.2 Å) non-bonded Se–F interactions were found in $[W_2(CO)_{10}Se_4](SbF_6)_2$.

Further studies of the reactivity of Se_4^{2+} and Te_4^{2+} for the synthesis of mixed di- and tri-metal clusters are in progress.

Received, 8th May 1986; Com. 617

References

- 1 C. Belin, T. Makani, and J. Rozière, J. Chem. Soc., Chem. Commun., 1985, 118.
- 2 A. Seigneurin and J. Rozière, unpublished results. Crystallographic work on this compound with a restricted data set (R 0.13) has allowed identification of only the cluster arrangement Te₃Mo with certainty; further X-ray studies are underway.
- 3 L. F. Dahl and P. W. Sutton, Inorg. Chem., 1963, 2, 1067.
- 4 R. J. Gillespie, J. P. Kent, and J. F. Sawyer, *Inorg. Chem.*, 1979, **20**, 4053.
- 5 G. M. Sheldrick, SHELX76, Program System for Crystal Structure Determination, University of Cambridge, 1976.
- 6 C. F. Campana, F. Y.-K. Lo, and L. F. Dahl, *Inorg. Chem.*, 1979, 18, 3060.
- 7 F. A. Cotton and G. Wilkinson, 'Advanced Inorganic Chemistry,' Wiley Interscience, New York, 1980, ch. 25.
- 8 G. Cardinal, R. J. Gillespie, J. F. Sawyer, and J. E. Vekris, J. Chem. Soc., Dalton Trans., 1982, 765.